IniciGrupsConversesMésTendències
Cerca al lloc
Aquest lloc utilitza galetes per a oferir els nostres serveis, millorar el desenvolupament, per a anàlisis i (si no has iniciat la sessió) per a publicitat. Utilitzant LibraryThing acceptes que has llegit i entès els nostres Termes de servei i política de privacitat. L'ús que facis del lloc i dels seus serveis està subjecte a aquestes polítiques i termes.
Hide this

Resultats de Google Books

Clica una miniatura per anar a Google Books.

S'està carregant…

Artificial neural networks--ICANN 2010 20th international conference,…

de Konstantinos I. Diamantaras

MembresRessenyesPopularitatValoració mitjanaConverses
28No n'hi ha cap661,464No n'hi ha capNo n'hi ha cap
th This volume is part of the three-volume proceedings of the 20 International Conference on Arti?cial Neural Networks (ICANN 2010) that was held in Th- saloniki, Greece during September 15–18, 2010. ICANN is an annual meeting sponsored by the European Neural Network Society (ENNS) in cooperation with the International Neural Network So- ety (INNS) and the Japanese Neural Network Society (JNNS). This series of conferences has been held annually since 1991 in Europe, covering the ?eld of neurocomputing, learning systems and other related areas. As in the past 19 events, ICANN 2010 provided a distinguished, lively and interdisciplinary discussion forum for researches and scientists from around the globe. Ito?eredagoodchanceto discussthe latestadvancesofresearchandalso all the developments and applications in the area of Arti?cial Neural Networks (ANNs). ANNs provide an information processing structure inspired by biolo- cal nervous systems and they consist of a large number of highly interconnected processing elements (neurons). Each neuron is a simple processor with a limited computing capacity typically restricted to a rule for combining input signals (utilizing an activation function) in order to calculate the output one. Output signalsmaybesenttootherunitsalongconnectionsknownasweightsthatexcite or inhibit the signal being communicated. ANNs have the ability “to learn” by example (a large volume of cases) through several iterations without requiring a priori ?xed knowledge of the relationships between process parameters.… (més)
Afegit fa poc pernfactor13
No n'hi ha cap
S'està carregant…

Apunta't a LibraryThing per saber si aquest llibre et pot agradar.

No hi ha cap discussió a Converses sobre aquesta obra.

Sense ressenyes
Sense ressenyes | afegeix-hi una ressenya
Has d'iniciar sessió per poder modificar les dades del coneixement compartit.
Si et cal més ajuda, mira la pàgina d'ajuda del coneixement compartit.
Títol normalitzat
Títol original
Títols alternatius
Data original de publicació
Gent/Personatges
Llocs importants
Esdeveniments importants
Pel·lícules relacionades
Premis i honors
Epígraf
Dedicatòria
Primeres paraules
Citacions
Darreres paraules
Nota de desambiguació
Editor de l'editorial
Creadors de notes promocionals a la coberta
Llengua original
CDD/SMD canònics

Referències a aquesta obra en fonts externes.

Wikipedia en anglès

No n'hi ha cap

th This volume is part of the three-volume proceedings of the 20 International Conference on Arti?cial Neural Networks (ICANN 2010) that was held in Th- saloniki, Greece during September 15–18, 2010. ICANN is an annual meeting sponsored by the European Neural Network Society (ENNS) in cooperation with the International Neural Network So- ety (INNS) and the Japanese Neural Network Society (JNNS). This series of conferences has been held annually since 1991 in Europe, covering the ?eld of neurocomputing, learning systems and other related areas. As in the past 19 events, ICANN 2010 provided a distinguished, lively and interdisciplinary discussion forum for researches and scientists from around the globe. Ito?eredagoodchanceto discussthe latestadvancesofresearchandalso all the developments and applications in the area of Arti?cial Neural Networks (ANNs). ANNs provide an information processing structure inspired by biolo- cal nervous systems and they consist of a large number of highly interconnected processing elements (neurons). Each neuron is a simple processor with a limited computing capacity typically restricted to a rule for combining input signals (utilizing an activation function) in order to calculate the output one. Output signalsmaybesenttootherunitsalongconnectionsknownasweightsthatexcite or inhibit the signal being communicated. ANNs have the ability “to learn” by example (a large volume of cases) through several iterations without requiring a priori ?xed knowledge of the relationships between process parameters.

No s'han trobat descripcions de biblioteca.

Descripció del llibre
Sumari haiku

Dreceres

Cobertes populars

No n'hi ha cap

Valoració

Mitjana: Sense puntuar.

Ets tu?

Fes-te Autor del LibraryThing.

 

Quant a | Contacte | LibraryThing.com | Privadesa/Condicions | Ajuda/PMF | Blog | Botiga | APIs | TinyCat | Biblioteques llegades | Crítics Matiners | Coneixement comú | 157,159,052 llibres! | Barra superior: Sempre visible