IniciGrupsConversesMésTendències
Cerca al lloc
Aquest lloc utilitza galetes per a oferir els nostres serveis, millorar el desenvolupament, per a anàlisis i (si no has iniciat la sessió) per a publicitat. Utilitzant LibraryThing acceptes que has llegit i entès els nostres Termes de servei i política de privacitat. L'ús que facis del lloc i dels seus serveis està subjecte a aquestes polítiques i termes.
Hide this

Resultats de Google Books

Clica una miniatura per anar a Google Books.

S'està carregant…

Spectral Theory of Infinite-Area Hyperbolic Surfaces

de David Borthwick

MembresRessenyesPopularitatValoració mitjanaConverses
4No n'hi ha cap2,800,567No n'hi ha capNo n'hi ha cap
This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h).… (més)
Afegit fa poc pernfactor13, fravir

Sense etiquetes

No n'hi ha cap
S'està carregant…

Apunta't a LibraryThing per saber si aquest llibre et pot agradar.

No hi ha cap discussió a Converses sobre aquesta obra.

Sense ressenyes
Sense ressenyes | afegeix-hi una ressenya
Has d'iniciar sessió per poder modificar les dades del coneixement compartit.
Si et cal més ajuda, mira la pàgina d'ajuda del coneixement compartit.
Títol normalitzat
Títol original
Títols alternatius
Data original de publicació
Gent/Personatges
Llocs importants
Esdeveniments importants
Pel·lícules relacionades
Premis i honors
Epígraf
Dedicatòria
Primeres paraules
Citacions
Darreres paraules
Nota de desambiguació
Editor de l'editorial
Creadors de notes promocionals a la coberta
Llengua original
CDD/SMD canònics

Referències a aquesta obra en fonts externes.

Wikipedia en anglès

No n'hi ha cap

This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h).

No s'han trobat descripcions de biblioteca.

Descripció del llibre
Sumari haiku

Dreceres

Cobertes populars

No n'hi ha cap

Valoració

Mitjana: Sense puntuar.

Ets tu?

Fes-te Autor del LibraryThing.

 

Quant a | Contacte | LibraryThing.com | Privadesa/Condicions | Ajuda/PMF | Blog | Botiga | APIs | TinyCat | Biblioteques llegades | Crítics Matiners | Coneixement comú | 157,942,015 llibres! | Barra superior: Sempre visible