IniciGrupsConversesExploraTendències
Cerca al lloc
Aquest lloc utilitza galetes per a oferir els nostres serveis, millorar el desenvolupament, per a anàlisis i (si no has iniciat la sessió) per a publicitat. Utilitzant LibraryThing acceptes que has llegit i entès els nostres Termes de servei i política de privacitat. L'ús que facis del lloc i dels seus serveis està subjecte a aquestes polítiques i termes.
Hide this

Resultats de Google Books

Clica una miniatura per anar a Google Books.

S'està carregant…

Genetic Algorithms with Python

de Clinton Sheppard

MembresRessenyesPopularitatValoració mitjanaConverses
3Cap3,596,691CapCap
Get a hands-on introduction to machine learning with genetic algorithms using Python. Step-by-step tutorials build your skills from Hello World! to optimizing one genetic algorithm with another, and finally genetic programming; thus preparing you to apply genetic algorithms to problems in your own field of expertise.Genetic algorithms are one of the tools you can use to apply machine learning to finding good, sometimes even optimal, solutions to problems that have billions of potential solutions. This book gives you experience making genetic algorithms work for you, using easy-to-follow example projects that you can fall back upon when learning to use other machine learning tools and techniques. Each chapter is a step-by-step tutorial that helps to build your skills at using genetic algorithms to solve problems using Python.Python is a high-level, low ceremony and powerful language whose code can be easily understood even by entry-level programmers. If you have experience with another programming language then you should have no difficulty learning Python by induction.ContentsChapter 1: Hello World! - Guess a password given the number of correct letters in the guess. Build a mutation engine.Chapter 2: One Max Problem - Produce an array of bits where all are 1s. Expands the engine to work with any type of gene.Chapter 3: Sorted Numbers - Produce a sorted integer array. Demonstrates handling multiple fitness goals and constraints between genes.Chapter 4: The 8 Queens Puzzle - Find safe Queen positions on an 8x8 board and then expand to NxN. Demonstrates the difference between phenotype and genotype.Chapter 5: Graph Coloring - Color a map of the United States using only 4 colors. Introduces standard data sets and working with files. Also introduces using rules to work with gene constraints.Chapter 6: Card Problem - More gene constraints. Introduces custom mutation, memetic algorithms, and the sum-of-difference technique. Also demonstrates a chromosome where the way a gene is used depends on its position in the gene array.Chapter 7: Knights Problem - Find the minimum number of knights required to attack all positions on a board. Introduces custom genes and gene-array creation. Also demonstrates local minimums and maximums.Chapter 8: Magic Squares - Find squares where all the rows, columns and both diagonals of an NxN matrix have the same sum. Introduces simulated annealing.Chapter 9: Knapsack Problem - Optimize the content of a container for one or more variables. Introduces branch and bound and variable length chromosomes.Chapter 10: Solving Linear Equations - Find the solutions to linear equations with 2, 3 and 4 unknowns. Branch and bound variation. Reinforces genotype flexibility.Chapter 11: Generating Sudoku - A guided exercise in generating Sudoku puzzles.Chapter 12: Traveling Salesman Problem (TSP) - Find the optimal route to visit cities. Introduces crossover and a pool of parents.Chapter 13: Approximating Pi - Find the two 10-bit numbers whose dividend is closest to Pi. Introduces using one genetic algorithm to tune another.Chapter 14: Equation Generation - Find the shortest equation that produces a specific result using addition, subtraction, multiplication, etc. Introduces symbolic genetic programming.Chapter 15: The Lawnmower Problem - Generate a series of instructions that cause a lawnmower to cut a field of grass. Genetic programming with control structures, objects and automatically defined functions (ADFs).Chapter 16: Logic Circuits - Generate circuits that behave like basic gates, gate combinations and finally a 2-bit adder. Introduces tree nodes and hill climbing.Chapter 17: Regular Expressions - Find regular expressions that match wanted strings. Introduces chromosome repair and growth control.Chapter 18: Tic-tac-toe - Create rules for playing the game.Source code: https://github.com/handcraftsman/GeneticAlgorithmsWithPython… (més)
Afegit fa poc perLentulus, realonedet
Cap
S'està carregant…

Apunta't a LibraryThing per saber si aquest llibre et pot agradar.

No hi ha cap discussió a Converses sobre aquesta obra.

Sense ressenyes
Sense ressenyes | afegeix-hi una ressenya
Has d'iniciar sessió per poder modificar les dades del coneixement compartit.
Si et cal més ajuda, mira la pàgina d'ajuda del coneixement compartit.
Títol normalitzat
Títol original
Títols alternatius
Data original de publicació
Gent/Personatges
Llocs importants
Esdeveniments importants
Pel·lícules relacionades
Premis i honors
Epígraf
Dedicatòria
Primeres paraules
Citacions
Darreres paraules
Nota de desambiguació
Editor de l'editorial
Creadors de notes promocionals a la coberta
Llengua original
CDD/SMD canònics
LCC canònic

Referències a aquesta obra en fonts externes.

Wikipedia en anglès

Cap

Get a hands-on introduction to machine learning with genetic algorithms using Python. Step-by-step tutorials build your skills from Hello World! to optimizing one genetic algorithm with another, and finally genetic programming; thus preparing you to apply genetic algorithms to problems in your own field of expertise.Genetic algorithms are one of the tools you can use to apply machine learning to finding good, sometimes even optimal, solutions to problems that have billions of potential solutions. This book gives you experience making genetic algorithms work for you, using easy-to-follow example projects that you can fall back upon when learning to use other machine learning tools and techniques. Each chapter is a step-by-step tutorial that helps to build your skills at using genetic algorithms to solve problems using Python.Python is a high-level, low ceremony and powerful language whose code can be easily understood even by entry-level programmers. If you have experience with another programming language then you should have no difficulty learning Python by induction.ContentsChapter 1: Hello World! - Guess a password given the number of correct letters in the guess. Build a mutation engine.Chapter 2: One Max Problem - Produce an array of bits where all are 1s. Expands the engine to work with any type of gene.Chapter 3: Sorted Numbers - Produce a sorted integer array. Demonstrates handling multiple fitness goals and constraints between genes.Chapter 4: The 8 Queens Puzzle - Find safe Queen positions on an 8x8 board and then expand to NxN. Demonstrates the difference between phenotype and genotype.Chapter 5: Graph Coloring - Color a map of the United States using only 4 colors. Introduces standard data sets and working with files. Also introduces using rules to work with gene constraints.Chapter 6: Card Problem - More gene constraints. Introduces custom mutation, memetic algorithms, and the sum-of-difference technique. Also demonstrates a chromosome where the way a gene is used depends on its position in the gene array.Chapter 7: Knights Problem - Find the minimum number of knights required to attack all positions on a board. Introduces custom genes and gene-array creation. Also demonstrates local minimums and maximums.Chapter 8: Magic Squares - Find squares where all the rows, columns and both diagonals of an NxN matrix have the same sum. Introduces simulated annealing.Chapter 9: Knapsack Problem - Optimize the content of a container for one or more variables. Introduces branch and bound and variable length chromosomes.Chapter 10: Solving Linear Equations - Find the solutions to linear equations with 2, 3 and 4 unknowns. Branch and bound variation. Reinforces genotype flexibility.Chapter 11: Generating Sudoku - A guided exercise in generating Sudoku puzzles.Chapter 12: Traveling Salesman Problem (TSP) - Find the optimal route to visit cities. Introduces crossover and a pool of parents.Chapter 13: Approximating Pi - Find the two 10-bit numbers whose dividend is closest to Pi. Introduces using one genetic algorithm to tune another.Chapter 14: Equation Generation - Find the shortest equation that produces a specific result using addition, subtraction, multiplication, etc. Introduces symbolic genetic programming.Chapter 15: The Lawnmower Problem - Generate a series of instructions that cause a lawnmower to cut a field of grass. Genetic programming with control structures, objects and automatically defined functions (ADFs).Chapter 16: Logic Circuits - Generate circuits that behave like basic gates, gate combinations and finally a 2-bit adder. Introduces tree nodes and hill climbing.Chapter 17: Regular Expressions - Find regular expressions that match wanted strings. Introduces chromosome repair and growth control.Chapter 18: Tic-tac-toe - Create rules for playing the game.Source code: https://github.com/handcraftsman/GeneticAlgorithmsWithPython

No s'han trobat descripcions de biblioteca.

Descripció del llibre
Sumari haiku

Cobertes populars

Dreceres

Valoració

Mitjana: Sense puntuar.

Ets tu?

Fes-te Autor del LibraryThing.

 

Quant a | Contacte | LibraryThing.com | Privadesa/Condicions | Ajuda/PMF | Blog | Botiga | APIs | TinyCat | Biblioteques llegades | Crítics Matiners | Coneixement comú | 170,251,094 llibres! | Barra superior: Sempre visible