IniciGrupsConversesMésTendències
Aquest lloc utilitza galetes per a oferir els nostres serveis, millorar el desenvolupament, per a anàlisis i (si no has iniciat la sessió) per a publicitat. Utilitzant LibraryThing acceptes que has llegit i entès els nostres Termes de servei i política de privacitat. L'ús que facis del lloc i dels seus serveis està subjecte a aquestes polítiques i termes.
Hide this

Resultats de Google Books

Clica una miniatura per anar a Google Books.

Number: The Language of Science, The…
S'està carregant…

Number: The Language of Science, The Masterpiece Science Edition (1930 original; edició 2005)

de Tobias Dantzig, Joseph Mazur, Barry Mazur

MembresRessenyesPopularitatValoració mitjanaMencions
392348,022 (3.95)7
An eloquent tour de force that reveals how the concept of number evolved from prehistorical times through the 20th century. Tobias Dantzig shows that the development of maths - from the invention of counting to the discovery of infinity - is a profoundly human story that progressed by |trying and erring, by groping and stumbling|. He shows how commerce, war and religion led to advances in maths and he recounts the stories of individuals whose breakthroughs expanded the concept of number and created the mathematics that we know today.… (més)
Membre:Stanislav
Títol:Number: The Language of Science, The Masterpiece Science Edition
Autors:Tobias Dantzig
Altres autors:Joseph Mazur, Barry Mazur
Informació:Pi Press (2005), Edition: 2nd, Hardcover, 416 pages
Col·leccions:La teva biblioteca
Valoració:
Etiquetes:PDF

Detalls de l'obra

Number de Tobias Dantzig (1930)

No n'hi ha cap.

No n'hi ha cap
S'està carregant…

Apunta't a LibraryThing per saber si aquest llibre et pot agradar.

No hi ha cap discussió a Converses sobre aquesta obra.

» Mira també 7 mencions

Es mostren totes 3
In Number : the language of science, Tobias Dantzig discusses numbers: real numbers, rational and irrational numbers, perfect numbers, primes, natural numbers, cardinal and ordinal numbers, finite numbers, imaginary numbers. Numbers, numbers, numbers. But there is much more. Dantzig discusses alphabet and its relationship to numbers, how we sense number when we don’t count, fractions and decimals, the theory of zero, infinity, and pi. The early mathematicians and their discoveries are recounted and in a section at the end, the author lists problems of math and their solutions.

My copy of Number is a 2007 edition edited by Joseph Mazur with the uncorrected text from Dantzig’s 4th edition. In addition to rearranging the text into two parts (number theory and mathematical problems), Mazur adds a forward by his brother Barry, endnotes to explain the text (although beware that the original text is not footnoted; Mazur only numbers the page to which he refers in his endnotes), a section on further reading which is up to date as of 2007, and an excellent index. Mazur also updates Dantzig’s work of 1954 to include solutions that had not been proven earlier.

The most interesting material for me was the early history of numbers, numbering and symbolism. I was also fascinated by the sections on geometry, especially referring to the Greeks. I learned of several mathematicians and their discoveries with which I was not familiar.

This is not a book for the faint of heart as Dantzig includes complex solutions. However, those that wish to skip these sections will still benefit from the rest of the text. Counting and arithmetic are second nature to us and learning that it wasn’t always so is a fascinating journey. ( )
2 vota fdholt | May 25, 2013 |
A survey of "the number concept" as revealed by the evolving idea of the infinite, evolving because specific mathematical problems required a change to reach a tenable solution. Dantzig ends with a short table of "key dates" in this timeline, useful as an orientation map on second reading. The material is too unfamiliar after just one reading for me to re-construct the changes to the concept of the infinite, or for that matter to identify when innovations were not linked to the infinite. A nice yardstick for the next reading: outline in narrative form that evolution.

Dantzig adopts a philosophical approach, in an easy style and allowing much free play for personality and dramatic history-telling. There are equations and some material can be rough sledding, but it's the material not the telling.

My edition (the fourth, revised and augmented) includes Part I being the verbatim text of the first edition, and Part II "for all intents and purposes, a new book". In 2011-12, read just Part I; best to revisit Part I before embarking on Part II, which reviews similar territory but from perspective of other specific problems illustrating the mathematical ideas and innovations. ( )
4 vota elenchus | Feb 4, 2012 |
Indeholder "Forord til tredje udgave", "Forord til fjerde udgave", "Første del. Talbegrebets udvikling", "Andel del. Nye og gamle problemer". "Navneregister".
Første del indeholder "I. Fingeraftryk.", "II. Den tomme søjle", "III. Tallære", "IV. Det sidste tal", "V. Symboler"; "VI. Det uudsigelige", "VII. Denne flydende verden", "VIII. Tilblivelsesakten", "IX. Hullerne fyldes ud", "X. Tallegemet", "XI. Det uendeliges anatomi", "XII. De to virkeligheder".
Anden del indeholder "A. Om at skrive tal", "B. Om hele tals egenskaber", "C. Om rødder og roduddragning", "D. Om principper og argumenter".

Der er lidt om venskabstal, perfekte tal, Eratostenes si, primtal, fermat-primtal. Wilsons teorem, Goldbach's postulat, Fermat's sidste sætning, osv.
Teorem af Fermat: n^p -n er et multiplum af p, hvis p er et primtal.
Teorem af Wilson: (n+1) går op i (n!+1) hvis og kun hvis n er et primtal.
Induktionsbevis, Reductio ad absurdum, bevis for at sqrt(2) er irrationel, algebraiske tal, Zenon og Zenons fire argumenter, Dedekind og Dedekind-snit, reelle tal, tallegemer, Cantor, kædebrøker, logaritmer, konvergente og divergente rækker, Algebraiske ligninger. Algebra og analyse. Descartes, analytisk geometri, Gauss, Argand, Sagredo, Simpicio, Salviati. Galilæi, transcendente tal, Cayley, Sylvester, matrix, matricer, komplekse tal, imaginære tal, Ramanujan, restklasser, binomialformlen, Blaise Pascal og Pascals trekant. Et sødt bevis for Wilsons teorem. Primtalsfordelingen. Euler, Legendre, Eulers sætning om at ethvert generisk polynomium må antage sammensatte værdier for i det mindste en værdi af argumentet. pythagoræiske taltripler, Sylvester, ulige perfekte tal, polynomiumsligninger, kædebrøker, uendelige kædebrøker, diofantiske ligninger, Dirichlet, Dirichlets distributionsprincip,

Denne bog var en kær ven, da jeg startede med at gå på opdagelse i matematikken. Der er en sjov blanding af nemme og svære ting i den. Den er dog skrevet for at være populærvidenskab, så der er mange afsnit, der bare er ord, ord og atter ord. ( )
  bnielsen | Mar 20, 2011 |
Es mostren totes 3
Sense ressenyes | afegeix-hi una ressenya

» Afegeix-hi altres autors

Nom de l'autorCàrrecTipus d'autorObra?Estat
Tobias Dantzigautor primaritotes les edicionscalculat
Gilli, L. RagusaTraductorautor secundarialgunes edicionsconfirmat
Mazur, BarryPròlegautor secundarialgunes edicionsconfirmat
Mazur, JosephEditorautor secundarialgunes edicionsconfirmat
Møller, Kjeld RahbækTraductorautor secundarialgunes edicionsconfirmat
Has d'iniciar sessió per poder modificar les dades del coneixement compartit.
Si et cal més ajuda, mira la pàgina d'ajuda del coneixement compartit.
Títol normalitzat
Informació del coneixement compartit en anglès. Modifica-la per localitzar-la a la teva llengua.
Títol original
Títols alternatius
Data original de publicació
Gent/Personatges
Llocs importants
Esdeveniments importants
Pel·lícules relacionades
Premis i honors
Epígraf
Dedicatòria
Primeres paraules
Citacions
Darreres paraules
Nota de desambiguació
Editor de l'editorial
Creadors de notes promocionals a la coberta
Informació del coneixement compartit en anglès. Modifica-la per localitzar-la a la teva llengua.
Llengua original
CDD/SMD canònics

Referències a aquesta obra en fonts externes.

Wikipedia en anglès (3)

An eloquent tour de force that reveals how the concept of number evolved from prehistorical times through the 20th century. Tobias Dantzig shows that the development of maths - from the invention of counting to the discovery of infinity - is a profoundly human story that progressed by |trying and erring, by groping and stumbling|. He shows how commerce, war and religion led to advances in maths and he recounts the stories of individuals whose breakthroughs expanded the concept of number and created the mathematics that we know today.

No s'han trobat descripcions de biblioteca.

Descripció del llibre
Sumari haiku

Dreceres

Cobertes populars

Valoració

Mitjana: (3.95)
0.5
1
1.5
2
2.5
3 6
3.5 1
4 8
4.5 1
5 5

Ets tu?

Fes-te Autor del LibraryThing.

 

Quant a | Contacte | LibraryThing.com | Privadesa/Condicions | Ajuda/PMF | Blog | Botiga | APIs | TinyCat | Biblioteques llegades | Crítics Matiners | Coneixement comú | 154,468,889 llibres! | Barra superior: Sempre visible